Bagi yang berminat untuk mengetahui lebih lanjut tentang pola variasi genom manusia terkini, sila baca artikel berikut:

human microsatelite variation

Terkini! Faktor genetik mempengaruhi 8 ciri kuantitatif penduduk di Asia

Baru-baru ini hasil daripada penyelidikan dalam bidang genetik manusia mendapati bahawa faktor genetik mempengaruhi 8 ciri kuantitatif genetik bagi penduduk Asia (khasnya di Korea).

Lapan ciri warisan tersebut ialah ketinggian, indeks berat badan, kadar denyutan jantung, tekanan darah sistolik, nisbah pinggang: punggung, densiti mineral tulang pada tibia (betis) dan tumit.

Maklumat selanjutnya boleh didapati dalam artikel di Jurnal Nature Genetics (2009)….

Nature Genetics 41, 527 – 534 (2009)
Published online: 26 April 2009 | doi:10.1038/ng.357

A large-scale genome-wide association study of Asian populations uncovers genetic factors influencing eight quantitative traits

Yoon et al. (2009)

Abstract

To identify genetic factors influencing quantitative traits of biomedical importance, we conducted a genome-wide association study in 8,842 samples from population-based cohorts recruited in Korea. For height and body mass index, most variants detected overlapped those reported in European samples. For the other traits examined, replication of promising GWAS signals in 7,861 independent Korean samples identified six previously unknown loci. For pulse rate, signals reaching genome-wide significance mapped to chromosomes 1q32 (rs12731740, P = 2.9 times 10-9) and 6q22 (rs12110693, P = 1.6 times 10-9), with the latter approx400 kb from the coding sequence of GJA1. For systolic blood pressure, the most compelling association involved chromosome 12q21 and variants near the ATP2B1 gene (rs17249754, P = 1.3 times 10-7). For waist-hip ratio, variants on chromosome 12q24 (rs2074356, P = 7.8 times 10-12) showed convincing associations, although no regional transcript has strong biological candidacy. Finally, we identified two loci influencing bone mineral density at multiple sites.

On chromosome 7q31, rs7776725 (within the FAM3C gene) was associated with bone density at the radius (P = 1.0 times 10-11), tibia (P = 1.6 times 10-6) and heel (P = 1.9 times 10-10). On chromosome 7p14, rs1721400 (mapping close to SFRP4, a frizzled protein gene) showed consistent associations at the same three sites (P = 2.2 times 10-3, P = 1.4 times 10-7 and P = 6.0 times 10-4, respectively).

This large-scale GWA analysis of well-characterized Korean population-based samples highlights previously unknown biological pathways.

Source

Alat HaFYS kesan DNA babi dengan tepat

Dengan terciptanya alat HaFYS yang berupaya mengesan DAN babi dengan tepat dalam makanan, sesungguhnya ia amat melegakan semua umat Islam yang selama ini terbelenggu dalam keraguan sama ada sesuatu makanan itu mengandungi unsur babi atau tidak, terutamanya di restoran, hotel, makan diproses, bahan makanan basah, dsb. Alat ini amat membantu JAKIM dalam menentukan kehalalan sesuatu makanan itu.

Syabas dan tahniah diucapkan kepada para penyedilik di Institut Penyelidikan Produk Halal (IPPH), Universiti Putra Malaysia dan Pengarahnya Prof. Dr Yaakob Che Man, yang telah berjaya menghasilkan alat pengesan ini. Saya sebagai warga UPM tumpang rasa gembira dan berbangga dengan kejayaan IPPH ini. Semoga kejayaan ini akan berterusan demi untuk memaslahatan ummah Islam, bukan saja di Malaysia malahan di seluruh dunia.

Perincian mengenai alat pengesan ini dipanjangkan dalam artikel berikut….

Oleh Mohd Azis Ngah
azis@bharian.com.my

Alat HaFYS kesan DNA babi dengan tepat, bantu pastikan restoran tepati piawaian Syariah

AWAL minggu ini, umat Islam digemparkan dengan berita sajian tidak halal yang disediakan kebanyakan kopitiam di negara ini. Pendedahan itu yang menyusuli laporan mengenai pasar raya menjual ayam tidak disembelih dengan sempurna, hanya mencetuskan kebimbangan ramai yang sudah pasti amat sensitif dengan isu halal haram makanan ini.

Persoalannya, selain logo halal disahkan kerajaan, apakah ada cara lain dapat membantu menangani isu ini, khususnya mengesan kehadiran unsur babi dalam makanan? Jawapannya – alat HaFSY atau sistem pengesahan halal yang dibangunkan Institut Penyelidikan Produk Halal (IPPH) Universiti Putra Malaysia (UPM). Malah, pada tempoh terdekat ini, jika melihat pegawai agama atau anggota penguatkuasa Jabatan Kemajuan Islam Malaysia (JAKIM) membawa alatan berwarna hitam seperti pembakar roti, memasuki mana-mana restoran, kilang atau kedai runcit, jangan tersalah sangka, ia bukan untuk dijual sebaliknya itulah HaFSY.

Alat itu sebenarnya adalah pengesan produk halal atau haram melalui pengesanan dan pengesahan Deoxyribonucleic Acid (DNA) yang dikhaskan bagi menentukan sesuatu produk mengandungi DNA babi atau tidak.

Ia dibangunkan IPPH selama lebih setahun yang terbukti berkesan, pantas mendapatkan keputusan dan mudah dibawa ke mana-mana.

Berbanding kaedah kajian sebelum ini, sampel produk akan dibawa ke makmal untuk dikaji dan keputusan paling cepat akan diperoleh selepas dua hari. Kini, ia cuma diperoleh dalam masa satu jam untuk menentukan produk mengandungi DNA babi atau tidak.

Bersesuaian moto produk HaFYS iaitu ‘one step, one button, one hour’ (satu langkah, satu butang, satu jam) sudah menceritakan kelebihannya.

Ia bermaksud pengguna boleh mengenal pasti atau mengesan kehadiran DNA babi dengan satu langkah penyediaan saja, menekan butang pada mesin PCR dan keputusan sama ada positif atau tidak boleh diperoleh dalam masa satu jam.

Bak kata Pengarah IPPH, Prof Dr Yaakob Che Man, melalui penggunaan produk itu, sesiapa saja boleh menguji sesuatu produk tanpa memerlukan kelayakan dalam bidang kajian DNA.

“Ustaz pun boleh buat, ia cukup mudah. Kita tak perlukan saintis untuk buat kerja pengesahan ini kerana keputusan yang diperoleh melalui alat ini tepat dan terbukti. Hanya masukkan sampel produk ke dalam alat kajian dan tunggu keputusan dalam masa sejam.

“Sesiapa saja boleh menggunakannya dan itulah matlamat ini supaya orang ramai sentiasa peka dengan produk halal atau haram dan satu daripadanya adalah melalui ujian saintifik makmal menggunakan produk HaFYS,” katanya.

Menurutnya, sebelum ini, ramai pengguna yang tidak tahu atau tidak faham apa yang dikatakan DNA iaitu bahan baka di dalam tubuh manusia dan hampir semua organisma lain.

Maklumat dalam DNA disimpan sebagai kod yang terdiri daripada empat asas kimia iaitu Adenine (A), Guanine (G), Citosin (C), dan Thiamin (T).

Jika dibuat kajian saintifik terhadap sesuatu produk dan ada jujukan atau urutan DNA daripada sumber haram dan sepadan dengan rekod DNA babi, secara automatik ia akan menunjukkan laporan positif. Begitu juga sekiranya ada DNA dari haiwan lain yang haram dimakan mengikut syarak.

Dr Yaakob menjelaskan, IPPH menjalankan penyelidikan mengikut kaedah penentuan kehadiran DNA daripada spesis haiwan yang tidak halal seperti babi bagi mengesahkan kehadirannya.

“Kami reka bentuk primer dan ‘probe’ (alat siasatan) sepadan dengan jujukan DNA babi. Seterusnya analisis lanjut Polymerase Chain Reaction (PCR) atau Ujian Tindakan Rantai Polimeris, dijalankan bagi menentukan sama ada wujud DNA babi dalam sesuatu produk halal. Hanya ada dua keputusan tepat iaitu positif atau negatif,” katanya.

Menurut Dr Yaakob, HaFYS bukan saja direka untuk mengesan unsur DNA babi dalam makanan tetapi berkesan dalam kajian terhadap pakaian, barangan kosmetik. Apa saja yang mempunyai unsur DNA babi walaupun dalam jumlah yang terlalu kecil, boleh dikesan menggunakan alat berkenaan.

Setakat ini, IPPH hanya memfokuskan kepada alat pengesanan kehadiran unsur DNA babi dan kini membangunkan kaedah sama mengesan kehadiran unsur alkohol.

Banyak pihak dikatakan mempunyai alatan PCR dalam menjalankan kajian makmal, tetapi produk HaFYS yang lebih terperinci diakui satu satunya produk di dunia yang dikhaskan kepada mengesan DNA babi.

“Dalam aspek sains, produk halal merujuk kepada kualiti yang baik (toyyibat) bermaksud produk itu selamat, bersih, berkhasiat, tidak memberi kemudaratan serta sesuai dengan fitrah manusia yang memerlukan benda yang baik.

“Dalam erti kata lain, konsep ‘halalan toyyiba’ seperti yang terkandung dalam Al Quran menepati makna sebenar produk halal. Menjadi tanggungjawab kami membantu umat Islam mengenal pasti produk halal atau haram dan menjadi tanggungjawab masyarakat menyedari hak mereka,” katanya.

Ketika ini produk ini yang mendapat kerjasama daripada sebuah syarikat di Utah, Amerika Syarikat sudah pun diluluskan dan bersedia memasuki pasaran tempatan serta antarabangsa.

‘Berpotensi jadi kaedah piawaian antarabangsa’

PRODUK pengesan produk halal atau haram melalui pengesahan Deoxyribonucleic Acid (DNA), HaFYS (Halal Verification System) berpotensi dipasarkan serta digunakan di seluruh dunia berdasarkan kaedah penggunaannya yang tepat dan mudah.

Ketika ini, produk hasil kajian dan penyelidikan Institut Penyelidikan Produk Halal (IPPH), Universiti Putra Malaysia (UPM) itu sudah mula diperkenalkan di serata dunia termasuk kepada 80 peserta luar negara mewakili agensi persijilan halal sempena MIHAS 2010, baru-baru ini.

Timbalan Pengarah IPPH merangkap penyelidik, Prof Madya Dr Shuhaimi Mustafa, berkata pihaknya banyak bekerjasama dengan negara luar termasuk Thailand, Indonesia dan Turki dalam usaha mengenengahkan penggunaan HaFYS.

Kerjasama dengan Jabatan Kemajuan Islam Malaysia (JAKIM) yang berperanan penting dalam menentukan status produk halal dilihat sebagai peluang keemasan untuk memantapkan penggunaan produk halal di peringkat tempatan dan luar negara.

“Kami mempunyai hubungan erat dengan JAKIM dan bekerjasama memberikan penerangan dan melatih pegawai mereka dalam aspek analisis saintifik serta menerima banyak sampel yang dikategorikan sebagai was-was untuk dianalisis.

“IPPH cukup yakin, melalui JAKIM, produk HaFYS ini berpotensi menjadi kaedah standard dan boleh digunakan di seluruh dunia. Walaupun JAKIM mengeluarkan cop Halal tetapi bagaimana kita nak pastikan produk mereka betul betul halal,” katanya.

Selain itu, IPPH turut menganggotai banyak jawatankuasa di JAKIM serta bertanggungjawab melatih pegawai agensi itu dalam aspek analisis saintifik serta menerima banyak sampel yang dikategorikan sebagai was-was untuk dianalisis.

Katanya, kaedah penggunaan produk itu dilihat menepati cita rasa masyarakat kerana pengguna hanya perlu memasukkan sampel kecil produk ke dalam tabung kecil sebesar batang pen sebelum meletakkannya ke dalam pemegang khas.

“Sampel itu dimasukkan ke dalam tabung kecil yang mengandungi semua bahan kajian, ia akan mengesan sebarang unsur DNA babi. Itulah yang membezakan produk ini kerana PCR kami adalah satu satunya mesin mempunyai ‘primer dan probe’ yang khas untuk DNA babi,” katanya.

Beliau turut memberikan contoh bagaimana ikan patin dan ikan keli yang didakwa diberi makanan bercampur unsur babi boleh dikesan sama ada mempunyai DNA haram atau tidak dengan cara mengkaji salah satu daripada sampel makanan, perut ikan, air kolam, lendir pada ikan dan lumut.

Dalam erti kata mudah, produk HaFYS akan dapat mengesan dengan tepat jika terdapat anggaran unsur DNA babi dalam sebarang produk dengan catatan bacaan 0.001 peratus ataupun satu auns (0.04 gram) bagi setiap satu kilogram.

Kesimpulannya, dalam konteks sains, produk halal merujuk kepada kualiti yang baik (toyyibat) bermaksud produk itu selamat, bersih, berkhasiat, tidak memberi kemudaratan serta sesuai dengan fitrah manusia yang memerlukan benda yang baik.

Itu bermakna konsep ‘halalan toyyiba’ seperti yang terkandung dalam al-Quran menepati makna sebenar produk halal yang tidak perlu diragui.

Info Kaedah lain mengesan unsur haram

# Protein (ELISA)
# Lemak (Kromatografi, FTIR)
# Electric Nose
# Alkohol (GC)

Institut Penyelidikan Produk Halal (IPPH)

# Ditubuhkan tahun 2005 dengan nama Institut Produk Halal
# Ditukar nama kepada IPPH pada 2006
# Skop kajian:
1) Makanan
2) Pakaian
3) Kosmetik
# Produk HaFYS pernah memenangi Anugerah Harta Intelek Negara 2009.

Produk HaFYS

# Setiap mesin bernilai RM50,000
# Satu cartridge bernilai RM200
# Berat maksimum mesin: 4 kilogram
# Hampir sama dengan teknologi mengesan denggi, malaria dan influenza.
# Mempunyai primer dan probe yang pertama di dunia.

Sumber berita

Kemalangan genetik hasilkan sifat ganjil

Macam-macam kejadian Allah yang aneh dan luar biasa. Subhanallah, Maha Suci Allah daripada segala sifat kekurangan. Semua kejadian ada asbab dan musababnya dan ini dikatakan mengikut sunnatullah. Namun begitu, Allah juga menunjukkan kebesaranNya dengan mempamerkan keanehan dan kelainan daripada sunatullahNya. Ini terjadi disebabkan oleh kelainan susunan DNA (gene)/kemalangan genetik yang akhirnya menghasilkan berbagai keanehan dan keadaan luar biasa….

Di antara keganjilan dan keadaan luar biasa yang disebabkan perubahan susunan gen ialah:

On 2006, this bizarre-looking baby was born in Charikot, the headquarters of Dolakha district, attracting a huge number of onlookers to witness the astonishing sight.

Frog-like Baby (unidentified baby – Nepal)

The neck-less baby with its head almost totally sunk into the upper part of the body and with extraordinarily large eyeballs literally popping out of the eye-sockets, was born to Nir Bahadur Karki and Suntali Karki at the Gaurishnkar Hospital in Charikot. The Karki couple is a permanent resident of Dolakha’s Bhirkot VDC.

The bizarre baby, however, died after half an hour of its birth, Suntali, the mother, informed. It was taken to the hospital after its death. The news about such a baby being brought to the hospital spread like wildfire and there were hundreds gathered at the hospital to have a look. The police had to be deployed to control the crowd.

The baby weighed 2kg at birth and was born after the normal nine-month gestation period. Suntali, already a mother of two normal daughters, was not suffering from any illness during the pregnancy. Nir Bahadur, the father, says he does not feel any remorse for the newly-born baby’s death. “I am happy that nothing happened to my wife,” he said.

The baby has a condition called anencephaly, a neural tube defect (like the cyclops baby), with no proper brain formation. The baby would have died a few days later. That’s why women are advised to take folate in early pregnancy.”

13-inch Tailed Man (Chandre Oram – India)

With a 13-inch tail, Chandre Oram, a tea-estate worker, has become quite an object of devotion in his native Alipurduar, West Bengal and believes that Hanuman is manifest in him. “I was born on Ram Navami (birthday of Lord Ram). People have a lot of faith in me – they get cured of severe ailments when they touch my tail. I believe I can do a lot of good to those who come to me with devotion,” says the man, before whom thousands of people queue up each day to seek blessings. In a corner of the courtyard of his home, Oram has set up a small Hanuman temple, where he receives offerings on Ram Navami, which he later offers to the deity.

However, because of the tail, Oram has found it difficult to get a bride. “Almost 20 women have turned down marriage proposals. They see me and agree to a match. But as soon as I turn around, they see my tail and leave. But I have decided I will marry the woman who accepts me and my tail. Or else, I’ll remain a bachelor like Hanuman,” he said.

Oram’s family is proud of his tail and has turned down offers from doctors for its removal by surgery. “He will not survive without his tail. It has become part of his being, his existence,” said Rekha, his sister. Doctors say that true tails are rare. But they are located in the coccygeal end of the vertebral column whereas Oram’s tail shoots out from the lumbar region. “The coccyx is a vestige in humans and we stopped growing tails from that region a long time ago when we evolved from monkeys. Oram’s case seems an aberration, an offshoot of a congenital defect,” said eminent surgeon Dr B Ramana. The medical community reads the monkey man’s case as a spina bifida — a defect in the bone of the spine covered by a hole with lots of hair covering it.

Cyclop Baby (unidentified baby – India)

On 2006, this baby was born with a only one eye in India. Medical staff who helped deliver the child believe that the child’s condition was caused by an experimental anti-cancer drug. Another cause written in the report by the hospital was that it could also be the result of a chromosomal disorder. The child was diagnosed with a rare chromosomal disorder, known as cyclopia. She was born with a single eye in the center of her forehead, no nose and her brain fused into a single hemisphere. With such severe deformities, it was a miracle that the girl survived even a few minutes after delivery. The baby died days later.

World’s Largest Hand (Lui Hua – China)

Lui Hua suffers from a rare condition known as macrodactyly. When he was hospitalized in Shanghai on July 2007, his left thumb measured 10.2 inches and his index finger measured close to 12. On July 20 surgeons undertook a seven-hour operation to reduce the size of Liu’s fingers and thumb. Doctors removed 11 pounds of flesh and bone in the procedure. A second surgery is scheduled to take place. Enlarged limbs can be caused by a number of medical conditions. Lymphedema is perhaps the most common cause and results in some extraordinarily enlarged limbs.

Feet facing backwards (Wang Fang – China)

Wang Fang, 27, of Chongqing city in China, was born with her feet facing the wrong way. She has learned to live with her condition without problems and recently refused a disability pension by being classified as disabled. “I can run faster than most of my friends and have a regular job as a waitress in the family restaurant. There is no reason to class me as disabled.”

Baby with Three Arms (Liu Junjie – China)

This 2-month-old baby named Liu Junjie from Anhui Province, China, was born with a third arm on 2006. Doctors successfully removed the extremely rare and well-developed third arm, but the baby required long-term physical therapy to gain function in his remaining hand, which has no palm and flexes in either direction. “We’re hoping to exchange information with doctors who’ve dealt with similar cases anywhere in the world,” said Chen, head of the orthopedics department at Shanghai Children’s Medical Center. “This is so rare that we have virtually no information to go on.”

Nipple on the foot (unidentified 22-year-old woman – Brazil)

The bizarre paper describing the case reads: “A 22-year-old woman sought medical care for a lesion in the plantar region of her left foot, a well-formed nipple surrounded by areola and hair. Microscopic examination of the dermis showed hair follicles, eccrine glands, and sebaceous glands. Fat tissue was noted at the base of the lesion. Clinical and histopathologic findings were consistent with the diagnosis of supernumerary breast tissue, also known as pseudomamma. To our knowledge, this is the first report of supernumerary breast tissue on the foot.”

Source

Botak: adakah faktor genetik?

Botak selalu dikaitkan dengan keguguran rambut yang berlebihan daripada kebiasaan, menjadikan rambut di kepala semakin hari semakin menipis….

Walaupun botak dikaitkan dengan orang lelaki, tetapi sesetengah perempuan pun menghadapi masalah serupa. Mungkin ada kaitan dengan genetik.

Sebelum mencegah atau merawat masalah keguguran rambut, kita harus memahami maklumat asas mengenai perkara ini.

Maklumat asas tentang botak dan faktor-faktor yang berkaitan dikongsi di bawah ini….

Understanding Hair Loss — the Basics

Source

What Is Hair Loss?

Hair grows everywhere on the human body except on the palms of our hands and the soles of our feet, but many hairs are so fine they’re virtually invisible. Hair is made up of a protein called keratin (the same protein in nails) produced in hair follicles in the outer layer of skin; as follicles produce new hair cells, old cells are being pushed out through the surface of the skin at the rate of about six inches a year. The hair you can see is actually a string of dead keratin cells. The average adult head has about 100,000 to 150,000 hairs and loses up to 100 of them a day; so finding a few stray hairs on your hairbrush is not necessarily cause for alarm.

At any one time, about 90% of the hair on a person’s scalp is growing. Each follicle has its own life cycle that can be influenced by age, disease, and a wide variety of other factors. This life cycle is divided into three phases:

* Anagen — active hair growth. Lasts between two to six years.
* Catagen — transitional. Lasts two to three weeks.
* Telogen — resting phase. At the end of the resting phase (two to three months) the hair is shed and a new hair replaces it and the growing cycle starts again.

As people age, their rate of hair growth slows.

There are many types of hair loss, also called alopecia:

Gradual thinning of hair with age is a natural condition known as involutional alopecia. More and more hair follicles go into a telogen, or resting, phase, and the remaining hairs become shorter and fewer in number.

Androgenic alopecia is another form of hair loss. It’s a genetically predisposed condition that can affect both men and women. Men with this condition can begin suffering hair loss as early as their teens or early 20s, while most women don’t experience noticeable thinning until their 40s or later.

In men, the condition is also called male pattern baldness. It’s characterized by a receding hairline and gradual disappearance of hair from the crown. In women, androgenic alopecia is referred to as female pattern baldness. Women with the condition experience a general thinning over the entire scalp, with the most extensive hair loss at the crown.

Patchy hair loss in children and young adults, often sudden in onset, is known as alopecia areata. This condition may result in complete baldness, but in about 90% of cases the hair returns, usually within a few years.

[Terjemahan: Gugur rambut bertompok pada kanak-kanak atau orang muda, berlaku secara tiba-tiba, dikenali sebagai alopecia areata. Keadaan ini boleh menyebabkan botak terus, tetapi lebih kurang 90% kes rambut akan tumbuh semula, selalunya dalam masa beberapa tahun.]

With alopecia universalis, all body hair falls out.

Tearing out one’s own hair, a psychological disorder known as trichotillomania, is seen most frequently in children.

Telogen effluvium is hair thinning over the scalp that occurs because of changes in the growth cycle of hair. A large number of hairs enter the resting phase at the same time, causing shedding and subsequent thinning.

What Causes Hair Loss?

Doctors do not know why certain hair follicles are programmed to have a shorter growth period than others. Although a person’s level of androgens — male hormones normally produced by both men and women — is believed to be a factor, hair loss has nothing to do with virility. An individual’s genes, however — from both male and female parents — unquestionably influence that person’s predisposition to male or female pattern baldness.

Telogen effluvium is temporary hair loss that can occur within a few months after a high fever, a severe illness or extreme stress, and in women following childbirth.

Drugs that can cause temporary hair loss include chemotherapy drugs used in cancer treatment, blood thinners, retinoids used to treat acne and other skin problems, beta-adrenergic blockers used to control blood pressure, and birth control pills.

Hair loss can also be caused by burns, X-rays, and scalp injuries. In such cases, normal hair growth usually returns once the cause is eliminated. Ringworm caused by a fungal infection can also cause hair loss.

The causes of alopecia areata, a disease that often strikes children or teenagers, remain unexplained. It is thought to be an autoimmune disease, meaning that the immune system revs up for unknown reasons and affects the hair follicles. In most cases the hair grows back, although it may be very fine and possibly a different color before normal coloration and thickness return.

[Terjemahan: Sebab-sebab terjadinya alopecia areata, sejenis penyakit yang selalunya terkena kepada kanak-kanak atau remaja, masih belum diketahui sepenuhnya. Sesetengah menjangkakan ia disebabkan oleh penyakit berkaitan autoimmune, iaitu sistem imun yang mempengaruhi folikel rambut tanpa diketahui sebabnya. Dalam kebanyakan kes, rambut akan tumbuh kembali, walaupun rambut yang sangat halus dan mungkin warnanya berbeza sebelum rambut tumbuh lebat dan kembali ke warna asal.]

Although shampooing too often, perms, bleaching, and dyeing hair do not cause baldness, they can contribute to overall thinning by making hair weak and brittle. Tight braiding and using rollers or hot curlers can damage and break hair, and running hair picks through tight curls can scar hair follicles. In most instances hair grows back normally if the source of the problem is removed, but severe damage to the hair or scalp sometimes causes permanent bald patches.

Hair Loss – Symptoms

Hair loss can occur as thinning, in which you may not notice hair falling out, or as shedding, in which clumps of hair fall out.

In the most common type of hair loss, inherited hair loss (androgenetic alopecia), men tend to lose hair on the front hairline and forehead and on top of the head. Eventually, only hair around the ears, the sides, and back of the head remains. Women with this condition typically have gradual thinning throughout the scalp.

Other causes of hair loss may also show distinct patterns. For example, conditions such as trichotillomania (compulsively pulling at the hair) or alopecia areata (in which the immune system attacks hair follicles ) result in obvious patches of hair loss, while stress and some medicines result in clumps of hair falling out.

Because hair is an important part of appearance, hair loss can also result in loss of self-esteem and feeling unattractive, especially in women and teens.

Female Pattern Baldness

Female pattern baldness

Mistakenly thought to be a strictly male disease, women make up a significant percentage of American hair loss sufferers. Forty percent of women have visible hair loss by the time they are age 40, according to the American Academy of Dermatology. Hair loss in women can be absolutely devastating for self image and emotional well-being.

Male Pattern Baldness

Male pattern baldness

The male pattern baldness (MPB) form of androgenetic alopecia (there is also a female pattern baldness) accounts for more than 95% of hair loss in men. By age 35, two-thirds of American men will have some degree of appreciable hair loss and by age 50 approximately 85% of men have significantly thinning hair. About 25% of men who suffer from male pattern baldness begin the painful process before they reach 21.

[Terjemahan: 95% daripada sebab botak di kalangan lelaki adalah dalam bentuk androgenetic alopecia (jenis ini juga terdapat pada wanita). Menjelang umur 35 tahun, dua per tiga daripada lelaki Amerika akan mengalami keguguran rambut yang banyak dan menjelang umur 50 tahun lebih kurang 85% orang lelaki mempunyai rambut yang nipis. Lebih kurang 25% lelaki yang botak mula mengalami proses tersebut sebelum mereka mencapai umur 21 tahun.]

Contrary to societal belief, most men who suffer from male pattern baldness are extremely unhappy with their situation and would do anything to change it. Hair loss affects every aspect of their life. It affects interpersonal relationships as well as their professional life. It is not uncommon for men to change their career paths because of hair loss. Read more about hair loss.

Telogen Effluvium

Pattern of Telogen effluvium

Telogen effluvium (TE) is probably the second most common form of hair loss dermatologists see. It is a poorly defined condition; very little research has been done to understand TE. In essence though, TE happens when there is a change in the number of hair follicles growing hair. If the number of hair follicles producing hair drops significantly for any reason during the resting, or telogen phase, there will be a significant increase in dormant, telogen stage hair follicles. The result is shedding, or TE hair loss. Read more about hair loss basics.

Botak juga boleh dikaitkan dengan gen yang diwarisi daripada ibu bapa atau datuk nenek/salsilah keturunan masing-masing. Nasihat-nasihat berguna daripada pakar-pakar kecantikan tempatan berkaitan masalah botak ini juga dimuat dalam artikel Kosmo yang dikongsi di bawah ini…..

Botak masalah keturunan

Oleh SITI NOR AFZAN KASIMAN

SETIAP kali menyisir rambut, hati Muzliana Safuan, 27, pasti merintih. Umpama igauan ngeri, ikal rambutnya yang gugur semakin banyak, rambutnya semakin menipis sekali gus mendedahkan bahagian tengah kepalanya.

“Sudah banyak cara saya lakukan untuk melebatkan rambut. Daripada penggunaan syampu berjenama terkenal, tonik rambut berasaskan herba, petua tradisi hingga ke rawatan pakar tetapi semuanya gagal.

“Keadaan ini sangat merisaukan lebih-lebih lagi saya bakal mendirikan rumah tangga beberapa bulan lagi. Mujur, saya memilih untuk bertudung sejak sekolah, jadi hanya keluarga dan kawan rapat yang mengetahui masalah saya,” kata Muzliana.

Tambah penjawat awam tersebut, masalah tersebut menyebabkan dia berasa kurang yakin untuk berhadapan dengan bakal suami dan keluarga mentua.

Masalah keguguran rambut ekstrem bukan sahaja dirasai Muzliana tetapi ramai lagi wanita mengalami episod ngeri itu.

Bagi individu yang berpegang kepada konsep rambut mahkota wanita, mereka pasti ghairah untuk memiliki rambut yang sihat dengan gaya terkini.

Menjawab masalah keguguran rambut tersebut, Presiden Persatuan Sains Rambut Malaysia, Dr. Steven Chow berkata, menjaga rambut tidak cukup dengan hanya bersyampu tiga kali seminggu.

Jelas beliau, kulit kepala juga memerlukan perapian dan vitamin yang cukup untuk kekal sihat tanpa sebarang masalah seperti kegatalan, kelemumur dan jangkitan kuman.

“Ramai pihak beranggapan silap memilih syampu, pengambilan serbuk perasa (monosodium glutamate) dalam masakan serta faktor penuaan sebagai sebab utama keguguran rambut, namun itu hanya penyebab sampingan.

“Realitinya, tekanan (stress) dalam kerjaya atau kehidupan menjadi pencetus kepada masalah keguguran rambut yang serius terutama membabitkan golongan lelaki,” jelas Steven.

MASALAH botak bukan hanya terhad kepada lelaki tetapi wanita turut mengalami fenomena sama.

MASALAH botak bukan hanya terhad kepada lelaki tetapi wanita turut mengalami fenomena sama.

Genetik

Menurut beliau, pola keguguran rambut lelaki (MPHL) yang biasa terjadi pada kaum Adam sering dikaitkan dengan faktor genetik.

“Mungkin ramai tidak menyangka botak tiada kaitan dengan faktor genetik, tetapi hakikatnya, keturunan kerap menjadi punca keguguran rambut.

“Ia boleh diwarisi daripada sebelah ibu atau bapa dan boleh berlaku terhadap lelaki ataupun wanita. Kedua-duanya cenderung untuk mewarisi gen botak,” ujar Steven.

Akibat daripada warisan gen rambut gugur tersebut, individu terlibat berisiko tinggi untuk berdepan masalah keguguran rambut yang mampu menipiskan rambut namun tidak semuanya berakhir dengan botak.

Namun, keadaan yang dikenali sebagai androgenetic alopeciaini boleh bermula pada usia belasan tahun, 20-an atau 30-an.

Dalam satu kajian jelas Steven, hampir 50 peratus anak-anak kepada lelaki atau wanita botak akan mewarisi gen tersebut.

“MPHL terjadi secara berperingkat-peringkat. Masalah itu bermula dari kawasan tengah kepala, ia mampu merebak hingga ke seluruh kepala. Ramai lelaki memilih untuk berdiam diri dan tidak berasa ia satu keperluan untuk berjumpa dengan doktor hanya kerana masalah rambut semakin menipis.

“Malah, lebih 80 peratus lelaki tidak tahu apa itu MPHL dan menganggap ia berlaku kerana faktor usia sedangkan masalah ini tidak akan melarat jika dirawat daripada awal,” katanya.

Steven menyarankan individu yang mengalami MPHL mendapatkan rawatan berkesan dengan menangani punca asas masalah tersebut.

Masalah keguguran rambut yang berisiko terjadi kepada setiap orang berkenaan turut mendorong ramai penyelidik untuk tampil menjalankan kajian.

Antaranya, beberapa ahli akademik dari dua universiti di Jerman iaitu Universiti Bonn dan Universiti Dusseldorf menjalankan kajian mengenainya. Mereka mendapati gen botak sememangnya diwarisi.

SELEBRITI Britney Spears membotakkan kepala kerana ingin membuat kejutan manakala Syarifah Amani membotakkan rambut untuk memenuhi kehendak skrip filem yang dilakonkannya.

Gelembung berair

Sekumpulan penyelidik di Victoria, Australia mendapati, keguguran rambut di bahagian tengah dan hadapan kepala meningkat selari mengikut usia. Ia memberi kesan sehingga 57 peratus wanita dan 73.5 peratus kepada lelaki yang berusia 80 tahun ke atas.

Laman sesawang Perpustakaan Medem Medical turut melaporkan, kira-kira 40 juta lelaki di Amerika Syarikat berdepan dengan masalah MPHL.

Menurut laman tersebut, seorang daripada empat lelaki mulai botak pada usia 30 tahun, dua pertiga mulai botak pada usia 60 tahun ke atas. Tambah laman itu, nisbah untuk mendapat gen botak adalah empat dalam setiap tujuh orang.

Selain tekanan dan faktor genetik, faktor pemakanan tidak seimbang, penyakit tiroid, masalah sistem imunisasi, pengambilan dadah atau ubat-ubatan tertentu, kurang penjagaan rambut, trauma dan jangkitan kulit kepala boleh menyumbang kepada keguguran rambut dan botak.

Pertumbuhan rambut individu dewasa yang dipengaruhi oleh hormon seks iaitu androgen boleh mengalami fasa pertumbuhan di antara dua hingga enam tahun dengan kepanjangan kira-kira 0.35 milimeter (mm) sehari. Selepas fasa tersebut, proses pertumbuhan akan berehat untuk beberapa bulan.

Rambut yang sihat dan normal memiliki beberapa ciri khas seperti berkilat, mudah lentur, tidak mudah patah dan boleh menyerap air.

Keguguran rambut di antara 50 hingga 100 helai sehari adalah normal namun jika ia tidak dipantau, keguguran mungkin akan menjadi lebih serius lebih-lebih lagi jika individu tersebut berada dalam kelompok berisiko tinggi untuk botak.

Jika terdedah kepada persekitaran kotor dan berhabuk, kulit kepala yang sering gatal boleh mendapat jangkitan kuman atau alahan kepada bahan kimia.

Sekiranya dibiarkan tanpa rawatan, ruam akan timbul dan bagi kes serius, gelembung berisi air kesan daripada radang kulit akan terbentuk. Pada peringkat ini, individu tersebut boleh mengalami kebotakan serius.

RAMBUT palsu sering menjadi pilihan terutamanya membabitkan wanita dalam menyembunyikan masalah rambut masing-masing.

Sementara itu, Ketua Trikologi Pusat Rambut Svenson, Teo Kim Teik berpendapat. untuk mendapatkan rambut yang sihat, amalan mengambil makanan seimbang sangat penting.

“Meninggalkan diet secara keterlaluan boleh menyebabkan keguguran kerana hampir 90 peratus komponen rambut terdiri daripada protein.

“Diet yang tidak sihat dan kurang mengambil protein akan menjadikan rambut lemah dan mudah gugur. Banyakkan pengambilan zat seperti kalsium dan zink kerana ia boleh menyihatkan rambut,” katanya.

Penjagaan kebersihan dan kesihatan rambut juga tidak boleh diabaikan. Rutin bersyampu sekurang-kurangnya dua kali seminggu dan pemilihan sikat yang sesuai mampu mengurangkan risiko keguguran rambut.

Sumber artikel Kosmo

Is there a gangster gene?

Is There a Gangster in Your Genes?

Al Capone, Jack the Ripper and Ted Bundy. Three of many larger-than-life personalities infamous for their violent, and in some cases murderous, behaviour.

The MAOA gene codes for the enzyme monoamine oxidase-A. It is located on the X chromosome and is primarily responsible for the degradation of amine neurotransmitters, such as dopamine, norepinephrine and serotonin. These neurotransmitters control mood, aggression and pleasure. What is even more interesting is that low expression of the MAOA gene has now been linked to violent tendencies.

A recent study reported that males with low expression levels of the MAOA gene were about twice as likely to have used a weapon or joined gangs than ‘normal’ boys. The research focused on males because the MAOA gene is carried on the X chromosome, hence males only have one copy. Thus, males who possess a variant of the MAOA gene do not have a second copy to counteract any errors.

Interestingly, some common inhibitors of MAOA include tobacco and drugs used to treat depression and Alzheimer’s. This increases the importance of accurate and specific measurement and monitoring of MAOA gene expression in high-risk category individuals.

If the level of expression of the MAOA gene can be measured, then an estimation of the likelihood of an individual getting involved in violent activities can be made. Although it would not be possible to change a violent individual’s DNA, it could be feasible to alter the level of gene expression using a suitable miRNA or transcription factor.

To measure the expression level of MAOA in males, a suitable probe has to be designed; one that is specific for the MAOA gene.

SynaProbe is a cutting-edge online tool that designs and selects suitable oligomer probes for a gene of interest, in this case, MAOA. It is most effective when complemented with SynaHybridise, an application that verifies the specificity of the selected probe sequence.

Step 1 of 3
Probe design enquiry for human genome:

>gi|33469954|ref|NM_000240.2| Homo sapiens monoamine oxidase A (MAOA), nuclear gene encoding mitochondrial protein, mRNA
GGGCGCTCCCGGAGTATCAGCAAAAGGGTTCGCCCCGCCCACAGTGCCCGGCTCCCCCCGGGTATCAAAAGAAGGATCGGCTCCGCCCCCGGGCTCCCCGGGGGAGTTGATAGAAGGGTCCTTCCCACCCTTTGCCGTCCCCACTCCTGTGCCTACGACCCAGGAGCGTGTCAGCCAAAGCATGGAGAATCAAGAGAAGGCGAGTATCGCGGGCCACATGTTCGACGTAGTCGTGATCGGAGGTGGCATTTCAGGACTATCTGCTGCCAAACTCTTGACTGAATATGGCGTTAGTGTTTTGGTTTTAGAAGCTCGGGACAGGGTTGGAGGAAGAACATATACTATAAGGAATGAGCATGTTGATTACGTAGATGTTGGTGGAGCTTATGTGGGACCAACCCAAAACAGAATCTTACGCTTGTCTAAGGAGCTGGGCATAGAGACTTACAAAGTGAATGTCAGTGAGCGTCTCGTTCAATATGTCAAGGGGAAAACATATCCATTTCGGGGCGCCTTTCCACCAGTATGGAATCCCATTGCATATTTGGATTACAATAATCTGTGGAGGACAATAGATAACATGGGGAAGGAGATTCCAACTGATGCACCCTGGGAGGCTCAACATGCTGACAAATGGGACAAAATGACCATGAAAGAGCTCATTGACAAAATCTGCTGGACAAAGACTGCTAGGCGGTTTGCTTATCTTTTTGTGAATATCAATGTGACCTCTGAGCCTCACGAAGTGTCTGCCCTGTGGTTCTTGTGGTATGTGAAGCAGTGCGGGGGCACCACTCGGATATTCTCTGTCACCAATGGTGGCCAGGAACGGAAGTTTGTAGGTGGATCTGGTCAAGTGAGCGAACGGATAATGGACCTCCTCGGAGACCAAGTGAAGCTGAACCATCCTGTCACTCACGTTGACCAGTCAAGTGACAACATCATCATAGAGACGCTGAACCATGAACATTATGAGTGCAAATACGTAATTAATGCGATCCCTCCGACCTTGACTGCCAAGATTCACTTCAGACCAGAGCTTCCAGCAGAGAGAAACCAGTTAATTCAGCGGCTTCCAATGGGAGCTGTCATTAAGTGCATGATGTATTACAAGGAGGCCTTCTGGAAGAAGAAGGATTACTGTGGCTGCATGATCATTGAAGATGAAGATGCTCCAATTTCAATAACCTTGGATGACACCAAGCCAGATGGGTCACTGCCTGCCATCATGGGCTTCATTCTTGCCCGGAAAGCTGATCGACTTGCTAAGCTACATAAGGAAATAAGGAAGAAGAAAATCTGTGAGCTCTATGCCAAAGTGCTGGGATCCCAAGAAGCTTTACATCCAGTGCATTATGAAGAGAAGAACTGGTGTGAGGAGCAGTACTCTGGGGGCTGCTACACGGCCTACTTCCCTCCTGGGATCATGACTCAATATGGAAGGGTGATTCGTCAACCCGTGGGCAGGATTTTCTTTGCGGGCACAGAGACTGCCACAAAGTGGAGCGGCTACATGGAAGGGGCAGTTGAGGCTGGAGAACGAGCAGCTAGGGAGGTCTTAAATGGTCTCGGGAAGGTGACCGAGAAAGATATCTGGGTACAAGAACCTGAATCAAAGGACGTTCCAGCGGTAGAAATCACCCACACCTTCTGGGAAAGGAACCTGCCCTCTGTTTCTGGCCTGCTGAAGATCATTGGATTTTCCACATCAGTAACTGCCCTGGGGTTTGTGCTGTACAAATACAAGCTCCTGCCACGGTCTTGAAGTTCTGTTCTTATGCTCTCTGCTCACTGGTTTTCAATACCACCAAGAGGAAAATATTGACAAGTTTAAAGGCTGTGTCATTGGGCCATGTTTAAGTGTACTGGATTTAACTACCTTTGGCTTAATTCCAATCATTGTTAAAGTAAAAACAATTCAAAGAATCACCTAATTAATTTCAGTAAGATCAAGCTCCATCTTATTTGTCAGTGTAGATCAACTCATGTTAATTGATAGAATAAAGCCTTGTGATCACTTTCTGAAATTCACAAAGTTAAACGTGATGTGCTCATCAGAAACAATTTCTGTGTCCTGTTTTTATTCCCTTCAATGCAAAATACATGATGATTTCAGAAACAAAGCATTTGACTTTCTGTCTGTGGAGGTGGAGTAGGTGAAGGCCCAGCCTGTAACTGTCCTTTTTCTTCCCTTAGGCAATGGTGAACTGTCATTACAGAGCCTAGAGGCTCACAGCCTCCTGGAGGAAGCAGCCTCCACTTTGGATCAGGAAATAGTAAAGGAAAGCAGTGTTGGGGGTAGCGGCATGCAGACCCTCAGACCAGAATGGGGACATCTTGTGGTCTGCTGCCTCAGGAATCTCCTGACCACTTGTAGTCCCTCCGACTTCTCTAGACATCTAGTCTCAGTGCTAGCTTATTTGTATTTTTCCTCTTTCACTTCTTATGGAGGAGAGTGTTTAACTGAGTTAGAATGTTGAAACTGACTTGCTGTGACTTATGTGCAGCTTTCCAGTTGAGCAGAGGAAAATAGTGGCAGGACTGTCCCCCAGGAGGACTCCCTGCTTAGCTCTGTGGGAGACCAACTACGACTGGCATCTTCTCTTCCCCCTGGAAGGCAGCTAGACACCAATGGATCCTTGTCAGTTGTAACATTCTATTTCAACTTCAGGAAAGCAGCAGTTTTCTTTTAATTTTTCCTATGACCATAAAATTAGACATACCTCTCAACTTACATATGTCTTCAACATGGTTACCTCTGCATAAATATTAGCAAAGCATGCCAATTTCTCTTAAGTACTGAAATACATATGATAAATTTGACTGTTATTTGTTGAGACTATCAAACAGAAAAGAAATTAGGGCTCTAATTTCCTTAAAGCAAGCTCACTTGCTTTAGTTGTTAAGTTTTATAAAAGACATGAAATTGAGTCATTTTATATATGAAAACTAAGTTCTCTATCTTAGGAGTAATGTCGGCCCACAAGGGTGCCCACCTCTTGTTTTCCCCTTTTAAAAACTCAGATTTTTAAAAGCCCTTTCCAAAGGTTTCAACTGTAAAATACTTCTTTTTACAATGTATCAACATATTTTTATTTAAGGGGAATTAACAATTGCCAGGGAAACCAGCCAACCCAAGTTTATTATATCATTAACCTTATCATAAATTCAAACCTAAGTTGCTGGACCCTGGTGTGAGGACATAAATCTTCCAAAGTTTTGCCTATCCTAAGAGCTGCATTTTTCTACTGCTCTTTACCTTGCATTTTAGCTAATTTAGGAGTTTTGAGAATGTATTGGATACGCTCCAGTACATAAGGAGTTGCCGCATATTATATCAGACTGCTTTGAGAAATCTCATCCCTAGTCTATTGCAGTTGTTTCTATTAGCTTACTGATTAACTCAGTCCTGACACACCTTTTGGGAAATGCTGATTTAAACTTCTTAACTGGCAACAGTTGGAACAGTAATCAGTTTGCTAACATATTTAAAGTCTTGAATGTTGAAGAACTCATGTGATTTACCCTTTTCAACTTTTTGGAAAACGATTTAATTTATTCTAATTAGATTAACCCTATTAATCTATGGATTGGGTATCAAAATGAATGCCAGTCCAGATGTGCCTAGACACGAAATTGGAGCTGAGGACTCTCACGATATGCAAGTTCATCCAACGTGAAGATACCATAAGCTTTTTCTCTGAACCAGAGAAATGAAAGTCAGTTTAAGAGGCTGATAGATCTTGGCCCTGTTAAGGCATCCACTTCACAGTTCTGAAGGCTGAGTCAGCCCCACTCCACAGTTAGGCCAAGAATTAGATTTTAAAACTTCATCTGTCTGTCCCAGTTAACTGTTAAATAAGGCCTCATCCTCCACTGAAGAGTATGGATTGAAGGATTGTGAACTATGTTTAGTGTGATTGTGAACTTGGTGCCTAATGTTCCATGTCTGAAGTTTGCCCCAGTGCTACACGTTGGAGTATACCTATGTGTGTGCTTTGCCACTGAAGTAAGATTTTGCCTGTATGGTACTGTTTTGTTTGTTAATAAAGTGCACTGCCACCCCCAATGCAAAAAAAAAAAAAAAAAA

Step 2 of 3
On the results page, click on to verify probe sequence specificity.

Step 3 of 3
The result demonstrates that the selected probe is specific if it has no permutations. With 3 mismatches it will bind to other chromosomes.

Sumber

DNA Forensics

Some basic information in DNA forensics technology

Sumber

How does forensic identification work?

Any type of organism can be identified by examination of DNA sequences unique to that species. Identifying individuals within a species is less precise at this time, although when DNA sequencing technologies progress farther, direct comparison of very large DNA segments, and possibly even whole genomes, will become feasible and practical and will allow precise individual identification.

Some Examples of DNA Uses for Forensic Identification

* Identify potential suspects whose DNA may match evidence left at crime scenes
* Exonerate persons wrongly accused of crimes
* Identify crime and catastrophe victims
* Establish paternity and other family relationships
* Identify endangered and protected species as an aid to wildlife officials (could be used for prosecuting poachers)
* Detect bacteria and other organisms that may pollute air, water, soil, and food
* Match organ donors with recipients in transplant programs
* Determine pedigree for seed or livestock breeds
* Authenticate consumables such as caviar and wine

Is DNA effective in identifying persons?

DNA identification can be quite effective if used intelligently. Portions of the DNA sequence that vary the most among humans must be used; also, portions must be large enough to overcome the fact that human mating is not absolutely random.

Consider the scenario of a crime scene investigation . . .

Assume that type O blood is found at the crime scene. Type O occurs in about 45% of Americans. If investigators type only for ABO, finding that the “suspect” in a crime is type O really doesn’t reveal very much.

If, in addition to being type O, the suspect is a blond, and blond hair is found at the crime scene, you now have two bits of evidence to suggest who really did it. However, there are a lot of Type O blonds out there.

If you find that the crime scene has footprints from a pair of Nike Air Jordans (with a distinctive tread design) and the suspect, in addition to being type O and blond, is also wearing Air Jordans with the same tread design, you are much closer to linking the suspect with the crime scene.

In this way, by accumulating bits of linking evidence in a chain, where each bit by itself isn’t very strong but the set of all of them together is very strong, you can argue that your suspect really is the right person.

With DNA, the same kind of thinking is used; you can look for matches (based on sequence or on numbers of small repeating units of DNA sequence) at many different locations on the person’s genome; one or two (even three) aren’t enough to be confident that the suspect is the right one, but thirteen sites are used. A match at all thirteen is rare enough that you (or a prosecutor or a jury) can be very confident (“beyond a reasonable doubt”) that the right person is accused.

How is DNA typing done?

Only one-tenth of a single percent of DNA (about 3 million bases) differs from one person to the next. Scientists can use these variable regions to generate a DNA profile of an individual, using samples from blood, bone, hair, and other body tissues and products.

In criminal cases, this generally involves obtaining samples from crime-scene evidence and a suspect, extracting the DNA, and analyzing it for the presence of a set of specific DNA regions (markers).

Scientists find the markers in a DNA sample by designing small pieces of DNA (probes) that will each seek out and bind to a complementary DNA sequence in the sample. A series of probes bound to a DNA sample creates a distinctive pattern for an individual. Forensic scientists compare these DNA profiles to determine whether the suspect’s sample matches the evidence sample. A marker by itself usually is not unique to an individual; if, however, two DNA samples are alike at four or five regions, odds are great that the samples are from the same person.

If the sample profiles don’t match, the person did not contribute the DNA at the crime scene.

If the patterns match, the suspect may have contributed the evidence sample. While there is a chance that someone else has the same DNA profile for a particular probe set, the odds are exceedingly slim. The question is, How small do the odds have to be when conviction of the guilty or acquittal of the innocent lies in the balance? Many judges consider this a matter for a jury to take into consideration along with other evidence in the case. Experts point out that using DNA forensic technology is far superior to eyewitness accounts, where the odds for correct identification are about 50:50.

The more probes used in DNA analysis, the greater the odds for a unique pattern and against a coincidental match, but each additional probe adds greatly to the time and expense of testing. Four to six probes are recommended. Testing with several more probes will become routine, observed John Hicks (Alabama State Department of Forensic Services). He predicted that DNA chip technology (in which thousands of short DNA sequences are embedded in a tiny chip) will enable much more rapid, inexpensive analyses using many more probes and raising the odds against coincidental matches.

What are some of the DNA technologies used in forensic investigations?

Restriction Fragment Length Polymorphism (RFLP)
RFLP is a technique for analyzing the variable lengths of DNA fragments that result from digesting a DNA sample with a special kind of enzyme. This enzyme, a restriction endonuclease, cuts DNA at a specific sequence pattern know as a restriction endonuclease recognition site. The presence or absence of certain recognition sites in a DNA sample generates variable lengths of DNA fragments, which are separated using gel electrophoresis. They are then hybridized with DNA probes that bind to a complementary DNA sequence in the sample.

RFLP was one of the first applications of DNA analysis to forensic investigation. With the development of newer, more efficient DNA-analysis techniques, RFLP is not used as much as it once was because it requires relatively large amounts of DNA. In addition, samples degraded by environmental factors, such as dirt or mold, do not work well with RFLP.

PCR Analysis
Polymerase chain reaction (PCR) is used to make millions of exact copies of DNA from a biological sample. DNA amplification with PCR allows DNA analysis on biological samples as small as a few skin cells. With RFLP, DNA samples would have to be about the size of a quarter. The ability of PCR to amplify such tiny quantities of DNA enables even highly degraded samples to be analyzed. Great care, however, must be taken to prevent contamination with other biological materials during the identifying, collecting, and preserving of a sample.

STR Analysis
Short tandem repeat (STR) technology is used to evaluate specific regions (loci) within nuclear DNA. Variability in STR regions can be used to distinguish one DNA profile from another. The Federal Bureau of Investigation (FBI) uses a standard set of 13 specific STR regions for CODIS. CODIS is a software program that operates local, state, and national databases of DNA profiles from convicted offenders, unsolved crime scene evidence, and missing persons. The odds that two individuals will have the same 13-loci DNA profile is about one in a billion.

Mitochondrial DNA Analysis
Mitochondrial DNA analysis (mtDNA) can be used to examine the DNA from samples that cannot be analyzed by RFLP or STR. Nuclear DNA must be extracted from samples for use in RFLP, PCR, and STR; however, mtDNA analysis uses DNA extracted from another cellular organelle called a mitochondrion. While older biological samples that lack nucleated cellular material, such as hair, bones, and teeth, cannot be analyzed with STR and RFLP, they can be analyzed with mtDNA. In the investigation of cases that have gone unsolved for many years, mtDNA is extremely valuable.

All mothers have the same mitochondrial DNA as their offspring. This is because the mitochondria of each new embryo comes from the mother’s egg cell. The father’s sperm contributes only nuclear DNA. Comparing the mtDNA profile of unidentified remains with the profile of a potential maternal relative can be an important technique in missing-person investigations.

Y-Chromosome Analysis
The Y chromosome is passed directly from father to son, so analysis of genetic markers on the Y chromosome is especially useful for tracing relationships among males or for analyzing biological evidence involving multiple male contributors.

The answer to this question is based on information from Using DNA to Solve Cold Cases – A special report from the National Institute of Justice (July 2002).

Some Interesting Uses of DNA Forensic Identification

# Identifying September 11th Victims
Identifying the victims of the September 11, 2001, World Trade Center attack presented a unique forensic challenge because the number and identity of the victims were unknown and many victims were represented only by bone and tissue fragments. At the time of the attack, no systems were in place for rapidly identifying victims in disasters with more than 500 fatalities.

The National Institutes of Justice assembled a panel of experts from the National Institutes of Health and other institutions to develop processes to identify victims using DNA collected at the site. Panel members produced forms and kits needed to enable the medical examiner’s office to collect reference DNA from victims’ previously stored medical specimens. These specimens were collected and entered into a database.

The medical examiner’s office also received about 20,000 pieces of human remains from the World Trade Center site, and a database of the victims’ DNA profiles was created. New information technology infrastructure was developed for data transfer between the state police and medical examiner’s office and to interconnect the databases and analytical tools used by panel members.

In 2005 the search was declared at an end because many of the unidentified remains were too small or too damaged to be identified by the DNA extraction methods available at that time. Remains of only 1585, of the 2792 people known to have died had been identified.

In 2007, the medical examiner’s office reopened the search after the Bode Technology Group developed a new methodology of DNA extraction that required much less sample material than previously necessary. The victim DNA database and the new methods have allowed more victims to be identified, and further identifications will be possible as forensic DNA technology improves.

# The DNA Shoah Project
The DNA Shoah Project is a genetic database of people who lost family during the Holocaust. The database will serve to reunite families separated during wartime and aid in identifying victims who remain buried anonymously throughout Europe.

# Disappeared Children in Argentina
Numerous people (known as “the Disappeared”) were kidnapped and murdered in Argentina in the 1970s. Many were pregnant. Their children were taken at birth and, along with other kidnapped children, were raised by their kidnappers. The grandparents of these children have been looking for them for many years. Read an article about a DNA researcher who has been helping them.

# Tomb of the Unknowns

# Son of Louis XVI and Marie Antionette
PARIS, Apr 19, 2000 (Reuters) — Scientists cracked one of the great mysteries of European history by using DNA tests to prove that the son of executed French King Louis XVI and Marie-Antoinette died in prison as a child. Royalists have argued for 205 years over whether Louis-Charles de France perished in 1795 in a grim Paris prison or managed to escape the clutches of the French Revolution. In December 1999, the presumed heart of the child king was removed from its resting place to enable scientists to compare its DNA makeup with samples from living and dead members of the royal family — including a lock of his mother Marie-Antoinette’s hair.

# The Murdered Nicholas Romanov, the Last Czar of Russia, and His Family

# Peruvian Ice Maiden
The Ice Maiden was a 12-to-14-year old girl sacrificed by Inca priests 500 years ago to satisfy the mountain gods of the Inca people. She was discovered in 1995 by climbers on Mt. Ampato in the Peruvian Andes. She is perhaps the best preserved mummy found in the Andes because she was in a frozen state. Analysis of the Ice Maiden’s DNA offers a wonderful opportunity for understanding her genetic origin. If we could extract mitochondrial DNA from the Ice Maiden’s tissue and successfully amplify and sequence it, then we could begin to trace her maternal line of descent and possibly locate past and current relatives.

# African Lemba Tribesmen
In southern Africa, a people known as the Lemba heed the call of the shofar. They have believed for generations that they are Jews, direct descendants of the biblical patriarchs Abraham, Isaac, and Jacob. However unlikely the Lemba’s claims may seem, modern science is finding ways to test them. The ever-growing understanding of human genetics is revealing connections between peoples that have never been seen before.

# Super Bowl XXXIV Footballs and 2000 Summer Olympic Souvenirs
The NFL used DNA technology to tag all the Super Bowl XXXIV balls, ensuring their authenticity for years to come and helping to combat the growing epidemic of sports memorabilia fraud. The footballs were marked with an invisible, yet permanent, strand of synthetic DNA. The DNA strand is unique and is verifiable any time in the future using a specially calibrated laser.

A section of human genetic code taken from several unnamed Australian athletes was added to ink used to mark all official goods — everything from caps to socks — from the 2000 Summer Olympic Games. The technology is used as a way to mark artwork or one-of-a-kind sports souvenirs.

# Migration Patterns
Evolutionarily stable mitochondrial DNA and Y chromosomes have allowed bioanthropologists to begin to trace human migration patterns around the world and identify family lineage

* See Genetic Anthropology, Ancestry, and Ancient Human Migrations

# Wine Heritage
Using DNA fingerprinting techniques akin to those used to solve crimes and settle paternity suits, scientists at the University of California, Davis, have discovered that 18 of the world’s most renowned grapevine varieties, or cultivars are close relatives. These include varieties long grown in northeastern France such as Chardonnay, the “king of whites,” and reds such as Pinot and Gamay noir, are close relatives.

# DNA Banks for Endangered Animal Species

# Poached Animals

# Declining Grizzly Bear Population

# Snowball the Cat
A woman was murdered in Prince Edward Island, Canada. Her estranged husband was implicated because a snowy white cat hair was found in a jacket near the scene of the crime, and DNA fragments from the hair matched DNA fragments from Snowball, the cat belonging to the husband’s parents. See M. Menotti-Raymond et al., “Pet cat hair implicates murder suspect,” Nature, 386, 774, 1997. Also see Holmes, Judy, Feline Forensics, Syracuse University Magazine, Summer 2001.

# Angiosperm Witness for the Prosecution
The first case in which a murderer was convicted on plant DNA evidence was described in the PBS TV series, “Scientific American Frontiers.” A young woman was murdered in Phoenix, Arizona, and a pager found at the scene of the crime led the police to a prime suspect. He admitted picking up the victim but claimed she had robbed him of his wallet and pager.

The forensic squad examined the suspect’s pickup truck and collected pods later identified as the fruits of the palo verde tree (Cercidium spp.). One detective went back to the murder scene and found several Palo Verde trees, one of which showed damage that could have been caused by a vehicle.

The detective’s superior officer innocently suggested the possibility of linking the fruits and the tree by using DNA comparison, not realizing that this had never been done before. Several researchers were contacted before a geneticist at the University of Arizona in Tucson agreed to take on the case. Of course, it was crucial to establish evidence that would stand up in court on whether individual plants (especially Palo Verde trees) have unique patterns of DNA.

A preliminary study on samples from different trees at the murder scene and elsewhere quickly established that each Palo Verde tree is unique in its DNA pattern. It was then a simple matter to link the pods from the suspect’s truck to the damaged tree at the murder scene and obtain a conviction. [WNED-TV (PBS – Buffalo, N.Y.)]

DNA Forensics Databases

National DNA Databank: CODIS

The COmbined DNA Index System, CODIS, blends computer and DNA technologies into a tool for fighting violent crime. The current version of CODIS uses two indexes to generate investigative leads in crimes where biological evidence is recovered from the crime scene. The Convicted Offender Index contains DNA profiles of individuals convicted of felony sex offenses (and other violent crimes). The Forensic Index contains DNA profiles developed from crime scene evidence. All DNA profiles stored in CODIS are generated using STR (short tandem repeat) analysis.

CODIS utilizes computer software to automatically search its two indexes for matching DNA profiles. Law enforcement agencies at federal, state, and local levels take DNA from biological evidence (e.g., blood and saliva) gathered in crimes that have no suspect and compare it to the DNA in the profiles stored in the CODIS systems. If a match is made between a sample and a stored profile, CODIS can identify the perpetrator.

This technology is authorized by the DNA Identification Act of 1994. All 50 states have laws requiring that DNA profiles of certain offenders be sent to CODIS. As of August 2007, the database contained over 5 million DNA profiles in its Convicted Offender Index and about 188,000 DNA profiles collected from crime scenes but not connected to a particular offender. (source http://www.fbi.gov/hq/lab/codis/clickmap.htm).

As more offender DNA samples are collected and law enforcement officers become better trained and equipped to collect DNA samples at crime scenes, the backlog of samples awaiting testing throughout the criminal justice system is increasing dramatically. In March 2003 President Bush proposed $1 billion in funding over 5 years to reduce the DNA testing backlog, build crime lab capacity, stimulate research and development, support training, protect the innocent, and identify missing persons. For more information, see the U.S. Department of Justice’s Advancing Justice Through DNA Technology.

More on CODIS

* CODIS: Combined DNA Index System – Information from the FBI.
* The FBI Laboratory’s Combined DNA Index System Program – Enter regional information to learn more about CODIS in your area. From Promega Corporation, a major supplier of reagents and other materials to support molecular biology research.
* National Commission on the Future of DNA Evidence.
* Postconviction DNA Testing: Recommendations for Handling Requests – Report from the National Commission on the Future of DNA Evidence.
* What Every Law Enforcement Officer Should Know About DNA Evidence (September 1999) – Report from the National Commission on the Future of DNA Evidence.
* Slide Show: Forensic DNA Legislation 2002 – A look at states’ CODIS legislation.
* Ethics of State DNA Collection (2004 meeting presentations and handouts from National Conference of State Legislatures’ Criminal Justice Program, Genetic Technologies Project, and Center for Ethics in Government)

Ethical, Legal, and Social Concerns about DNA Databanking

The primary concern is privacy. DNA profiles are different from fingerprints, which are useful only for identification. DNA can provide insights into many intimate aspects of people and their families including susceptibility to particular diseases, legitimacy of birth, and perhaps predispositions to certain behaviors and sexual orientation. This information increases the potential for genetic discrimination by government, insurers, employers, schools, banks, and others.

Collected samples are stored, and many state laws do not require the destruction of a DNA record or sample after a conviction has been overturned. So there is a chance that a person’s entire genome may be available —regardless of whether they were convicted or not. Although the DNA used is considered “junk DNA”, single tandem repeated DNA bases (STRs), which are not known to code for proteins, in the future this information may be found to reveal personal information such as susceptibilities to disease and certain behaviors.

Practicality is a concern for DNA sampling and storage. An enormous backlog of over half a million DNA samples waits to be entered into the CODIS system. The statute of limitations has expired in many cases in which the evidence would have been useful for conviction.

Who is chosen for sampling also is a concern. In the United Kingdom, for example, all suspects can be forced to provide a DNA sample. Likewise, all arrestees –regardless of the degree of the charge and the possibility that they may not be convicted–can be compelled to comply. This empowers police officers, rather than judges and juries, to provide the state with intimate evidence that could lead to “investigative arrests.”

In the United States each state legislature independently decides whether DNA can be sampled from arrestees or convicts. In 2006, the New Mexico state legislature passed Katie’s Bill, a law that requires the police to take DNA samples from suspects in most felony arrests. Previous New Mexico laws required DNA to be sampled only from convicted felons. The bill is named for Katie Sepich, whose 2003 murder went unsolved until her killer’s DNA entered the database in 2005 when he was convinced of another felony. Her killer had been arrested, but not convicted, for burglary prior to 2005.

Opponents of the law assert that it infringes on the privacy and rights of the innocent. While Katie’s Law does allow cleared suspects to petition to have their DNA samples purged from the state database, the purging happens only after the arrest. Civil liberties advocates say that Katie’s Bill still raises the question of Fourth Amendment violations against unreasonable search and seizure and stress that the law could be abused to justify arrests made on less than probable cause just to obtain DNA evidence.

As of September 2007, all 50 states have laws that require convicted sex offenders to submit DNA, 44 states have laws that require convicted felons to submit DNA, 9 states require DNA samples from those convicted of certain misdemeanors, and 11 states—including Alaska, Arizona, California, Kansas, Louisiana, Minnesota, New Mexico, North Dakota, Tennessee, Texas, and Virginia—have laws authorizing arrestee DNA sampling.

Potential Advantages and Disadvantages of Banking Arrestee DNA

Advantages

* Major crimes often involve people who also have committed other offenses. Having DNA banked potentially could make it easier to identify suspects, just as fingerprint databases do.
* Innocent people currently are incarcerated for crimes they did not commit; if DNA samples had been taken at the time of arrest, these individuals could have been proven innocent and thereby avoided incarceration..
* Banking arrestees’ DNA instead of banking only that of convicted criminals could result in financial savings in investigation, prosecution, and incarceration.

Disadvantages

* Arrestees often are found innocent of crimes. The retention of innocent people’s DNA raises significant ethical and social issues.
* If people’s DNA is in police databases, they might be identified as matches or partial matches to DNA found at crime scenes. This occurs even with innocent people, for instance, if an individual had been at a crime scene earlier or had a similar DNA profile to the actual criminal.
* Sensitive genetic information, such as family relationships and disease susceptibility, can be obtained from DNA samples. Police, forensic science services, and researchers using the database have access to people’s DNA without their consent. This can be seen as an intrusion of personal privacy and a violation of civil liberties.
* Studies of the United Kingdom’s criminal database, which retains the DNA samples of all suspects, show that ethnic minorities are over represented in the population of arrestees and are, therefore, overrepresented in the criminal DNA database. This raises the concern of an institutionalized ethnic bias in the criminal justice system.
* Even the most secure database has a chance of being compromised.

To identify individuals, forensic scientists scan 13 DNA regions, or loci, that vary from person to person and use the data to create a DNA profile of that individual (sometimes called a DNA fingerprint). There is an extremely small chance that another person has the same DNA profile for a particular set of 13 regions.

%d bloggers like this: